SICP Exercise 3.77 delayed integrand
Exercise 3.77. The integral procedure used above was analogous to the ``implicit'' definition of the infinite stream of integers in section 3.5.2. Alternatively, we can give a definition of integral that is more like integers-starting-from (also in section 3.5.2):
(define (integral integrand initial-value dt)
(cons-stream initial-value
(if (stream-null? integrand)
the-empty-stream
(integral (stream-cdr integrand)
(+ (* dt (stream-car integrand))
initial-value)
dt))))
When used in systems with loops, this procedure has the same problem as does our original version of integral. Modify the procedure so that it expects the integrand as a delayed argument and hence can be used in the solve procedure shown above.
SOLUTION
The code is here.
(define (integral integrand initial-value dt)
(cons-stream initial-value
(if (stream-null? integrand)
the-empty-stream
(integral (stream-cdr integrand)
(+ (* dt (stream-car integrand))
initial-value)
dt))))
When used in systems with loops, this procedure has the same problem as does our original version of integral. Modify the procedure so that it expects the integrand as a delayed argument and hence can be used in the solve procedure shown above.
SOLUTION
The code is here.
Comments
Post a Comment