SICP Exercise 2.37 matrix

Exercise 2.37.  Suppose we represent vectors v = (vi) as sequences of numbers, and matrices m = (mij) as sequences of vectors (the rows of the matrix). For example, the matrix


is represented as the sequence ((1 2 3 4) (4 5 6 6) (6 7 8 9)). With this representation, we can use sequence operations to concisely express the basic matrix and vector operations. These operations (which are described in any book on matrix algebra) are the following:


We can define the dot product as17

(define (dot-product v w)
  (accumulate + 0 (map * v w)))


Fill in the missing expressions in the following procedures for computing the other matrix operations. (The procedure accumulate-n is defined in exercise 2.36.)

(define (matrix-*-vector m v)
  (map <??> m))
(define (transpose mat)
  (accumulate-n <??> <??> mat))
(define (matrix-*-matrix m n)
  (let ((cols (transpose n)))
    (map <??> m)))


SOLUTION


The code and tests are here.




Comments

Popular posts from this blog

SICP Exercise 4.18 a alternative strategy for interpreting internal definitions

SICP Exercise 3.11 make-account internal definitions with local state

SICP Exercise 3.13 make-cycle