Posts

Showing posts from February, 2018

SICP Exercise 2.32 subsets

Exercise 2.32.   We can represent a  set as a list of distinct elements, and we can represent the set of all subsets of the set as a list of lists. For example, if the set is  (1 2 3) , then the set of all subsets is  (() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3)) . Complete the following definition of a procedure that generates the set of subsets of a set and give a clear explanation of why it works: (define (subsets s)   (if (null? s)       (list nil)       (let ((rest (subsets (cdr s))))         (append rest (map < ?? > rest))))) SOLUTION The code and tests are here . Explanation: This problem is identical to the count-change problem that appears earlier in this  book. Let's say that from a given set S, we pick any element e. Then, the...

SICP Exercise 2.31 tree-map

Exercise 2.31.   Abstract your answer to exercise  2.30  to produce a procedure  tree-map  with the property that  square-tree  could be defined as (define (square-tree tree) (tree-map square tree)) SOLUTION The code and tests are here .

SICP Exercise 2.30 square-tree

Exercise 2.30.   Define a procedure  square-tree  analogous to the  square-list  procedure of exercise  2.21 . That is,  square-list  should behave as follows: (square-tree  (list 1        (list 2 (list 3 4) 5)        (list 6 7))) (1 (4 (9 16) 25) (36 49)) Define  square-tree  both directly (i.e., without using any higher-order procedures) and also by using  map  and recursion. SOLUTION The code and tests are here .

SICP Exercise 2.29 binary mobile Part d

Exercise 2.29.    A binary mobile consists of two branches, a left branch and a right branch. Each branch is a rod of a certain length, from which hangs either a weight or another binary mobile. We can represent a binary mobile using compound data by constructing it from two branches (for example, using  list ): (define (make-mobile left right)   (list left right)) A branch is constructed from a  length  (which must be a number) together with a  structure , which may be either a number (representing a simple weight) or another mobile: (define (make-branch length structure)   (list length structure)) a.  Write the corresponding selectors  left-branch  and  right-branch , which return the branches of a mobile, and  branch-length  and  branch-structure , which return the components of a branch. b.  Using your selectors, define a ...

SICP Exercise 2.29 binary mobile Parts a-b-c

Exercise 2.29.    A binary mobile consists of two branches, a left branch and a right branch. Each branch is a rod of a certain length, from which hangs either a weight or another binary mobile. We can represent a binary mobile using compound data by constructing it from two branches (for example, using  list ): (define (make-mobile left right)   (list left right)) A branch is constructed from a  length  (which must be a number) together with a  structure , which may be either a number (representing a simple weight) or another mobile: (define (make-branch length structure)   (list length structure)) a.  Write the corresponding selectors  left-branch  and  right-branch , which return the branches of a mobile, and  branch-length  and  branch-structure , which return the components of a branch. b.  Using your selectors, define a ...

SICP Exercise 2.28 fringe

Exercise 2.28.   Write a procedure  fringe  that takes as argument a tree (represented as a list) and returns a list whose elements are all the leaves of the tree arranged in left-to-right order. For example, (define x (list (list 1 2) (list 3 4))) (fringe x) (1 2 3 4) (fringe (list x x)) (1 2 3 4 1 2 3 4) SOLUTION The code and tests are here .

SICP Exercise 2.27 deep-reverse

Exercise 2.27.   Modify your  reverse  procedure of exercise  2.18  to produce a  deep-reverse  procedure that takes a list as argument and returns as its value the list with its elements reversed and with all sublists deep-reversed as well. For example, (define x (list (list 1 2) (list 3 4))) x ((1 2) (3 4)) (reverse x) ((3 4) (1 2)) (deep-reverse x) ((4 3) (2 1)) SOLUTION The code and tests are here .

SICP Exercise 2.26

Exercise 2.26.   Suppose we define  x  and  y  to be two lists: (define x (list 1 2 3)) (define y (list 4 5 6)) What result is printed by the interpreter in response to evaluating each of the following expressions: (append x y) (cons x y) (list x y) SOLUTION The code and tests are here .

SICP Exercise 2.25 Pick 7

Exercise 2.25.   Give combinations of  car s and  cdr s that will pick 7 from each of the following lists: (1 3 (5 7) 9) ((7)) (1 (2 (3 (4 (5 (6 7)))))) SOLUTION The code and tests are here .

SICP Exercise 2.24

Image
Exercise 2.24.   Suppose we evaluate the expression  (list 1 (list 2 (list 3 4))) . Give the result printed by the interpreter, the corresponding box-and-pointer structure, and the interpretation of this as a tree (as in figure  2.6 ). SOLUTION

SICP Exercise 2.23 for-each

Exercise 2.23.   The procedure  for-each  is similar to  map . It takes as arguments a procedure and a list of elements. However, rather than forming a list of the results,  for-each  just applies the procedure to each of the elements in turn, from left to right. The values returned by applying the procedure to the elements are not used at all --  for-each  is used with procedures that perform an action, such as printing. For example, (for-each (lambda (x) (newline) (display x))           (list 57 321 88)) 57 321 88 The value returned by the call to  for-each  (not illustrated above) can be something arbitrary, such as true. Give an implementation of  for-each . SOLUTON The code and tests are here .